Huo S et al (2016) Fully zwitterionic nanoparticle antimicrobial agents through tuning of core size

and ligand structure. ACS Nano 10:87328737

Iram NE et al (2015) Interaction mode of polycarbazoletitanium dioxide nanocomposite

with DNA: molecular docking simulation and in-vitro antimicrobial study. J Photochem

Photobiol B Biol 153:2032

Jayaraman R (2009) Antibiotic resistance: an overview of mechanisms and a paradigm shift. Curr

Sci 96:14751484

Joost U et al (2015) Photocatalytic antibacterial activity of nano-TiO2 (anatase)-based thinlms:

effects on Escherichia coli cells and fatty acids. J Photochem Photobiol B Biol 142:178185

Khashan KS, Sulaiman GM, Ameer A, Kareem FA, Napolitano G (2016) Synthesis, characteriza-

tion and antibacterial activity of colloidal NiO nanoparticles. Pak J Pharm Sci 29:541546

Knetsch ML, Koole LH (2011) New strategies in the development of antimicrobial coatings: the

example of increasing usage of silver and silver nanoparticles. Polymers 3:340366

Lee J-H, Kim Y-G, Cho MH, Lee J (2014) ZnO nanoparticles inhibit Pseudomonas aeruginosa

biolm formation and virulence factor production. Microbiol Res 169:888896

Lellouche J, Friedman A, Gedanken A, Banin E (2012a) Antibacterial and antibiolm properties of

yttriumuoride nanoparticles. Int J Nanomedicine 7:5611

Lellouche J, Friedman A, Lahmi R, Gedanken A, Banin E (2012b) Antibiolm surface

functionalization of catheters by magnesiumuoride nanoparticles. Int J Nanomedicine 7:1175

Lellouche J, Friedman A, Lellouche J-P, Gedanken A, Banin E (2012c) Improved antibacterial and

antibiolm activity of magnesiumuoride nanoparticles obtained by water-based ultrasound

chemistry. Nanomed Nanotechnol Biol Med 8:702711

Leroueil PR, Hong S, Mecke A, Baker JR Jr, Orr BG, Banaszak Holl MM (2007) Nanoparticle

interaction with biological membranes: does nanotechnology present a Janus face? Acc Chem

Res 40:335342

Lesniak A, Salvati A, Santos-Martinez MJ, Radomski MW, Dawson KA, Åberg C (2013) Nano-

particle adhesion to the cell membrane and its effect on nanoparticle uptake efciency. J Am

Chem Soc 135:14381444

Leuba

KD,

Durmus

NG,

Taylor

EN,

Webster

TJ

(2013)

Carboxylate

functionalized

superparamagnetic iron oxide nanoparticles (SPION) for the reduction of S. aureus growth

post biolm formation. Int J Nanomedicine 8:731

Leung YH et al (2014) Mechanisms of antibacterial activity of MgO: non-ROS mediated toxicity of

MgO nanoparticles towards Escherichia coli. Small 10:11711183

Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, Alvarez PJ (2008) Antimicrobial

nanomaterials for water disinfection and microbial control: potential applications and

implications. Water Res 42:45914602

Li H, Chen Q, Zhao J, Urmila K (2015) Enhancing the antimicrobial activity of natural extraction

using the synthetic ultrasmall metal nanoparticles. Sci Rep 5:11033

Luan B, Huynh T, Zhou R (2016) Complete wetting of graphene by biological lipids. Nanoscale 8:

57505754

Lundberg ME, Becker EC, Choe S (2013) MstX and a putative potassium channel facilitate biolm

formation in Bacillus subtilis. PLoS One 8:e60993

Magiorakos AP et al (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant

bacteria: an international expert proposal for interim standard denitions for acquired resistance.

Clin Microbiol Infect 18:268281

Nagy A, Harrison A, Sabbani S, Munson RS Jr, Dutta PK, Waldman WJ (2011) Silver

nanoparticles embedded in zeolite membranes: release of silver ions and mechanism of

antibacterial action. Int J Nanomedicine 6:1833

Nataraj N et al (2014) Synthesis and anti-staphylococcal activity of TiO2 nanoparticles and

nanowires in ex vivo porcine skin model. J Biomed Nanotechnol 10:864870

Neethirajan S, Clond MA, Vogt A (2014) Medical biolmsnanotechnology approaches. J

Biomed Nanotechnol 10:28062827

11

Nanoparticles: A Potential Breakthrough in Counteracting. . .

175